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ACTIVATION FUNCTIONS IN NEURAL NETWORKS:
OVERVIEW AND COMPARISON

Neural networks have become one of the most powerful technologies of our time, revolutionizing many
industries. Their capabilities allow solving complex tasks that were previously considered impossible. Neural
networks consist of interconnected nodes called neurons that transmit and process information. Networks can
have different structures, from simple ones with a few layers to complex ones with tens or even hundreds of
layers. Each layer can contain thousands or millions of neurons, and connections between neurons can have
different weights. Neural network training algorithms can be complex to tune and optimize, and the training
process can be time-consuming, especially for large networks. Activation functions play a key role in neural
networks by performing several important functions, namely, activation functions introduce nonlinearity into
neural networks, which makes them capable of learning from complex data and performing complex tasks. In
addition, activation functions determine the neuron's output value, which can be interpreted as a probability,
magnitude, or other type of value, depending on the task. Neural networks are highly dependent on the
activation functions used in their neurons and play a critical role in shaping the behavior and performance of
neural networks. The article presents a comprehensive overview and comparative analysis of various activation
Sfunctions commonly used in deep learning. Deep learning is a branch of machine learning that uses neural
networks with a deep architecture. The paper examines various activation functions (Sigmoid, Tanh, ReLU,
LeakyReLU, ELU, SELU, Swish, Mish, Softmax) used in neural networks. Their mathematical properties,
advantages and limitations of each activation function are described in detail, as well as empirical data from
experiments performed on reference datasets. The conducted studies provide insight into the selection and
optimization of activation functions for neural network architecture.

Key words: Activation functions, Neural networks, Deeplearning, Sigmoid, Tanh, ReLU, LeakyReLU, ELU,
SELU, Swish, Mish, Softmax.

Formulation of the problem. Neural networks
are a fundamental building block of modern machine
learning systems, and the choice of activation
function profoundly impacts their expressiveness and
optimization behavior. A deeper understanding of
activation functions can improve the performance of
neural networks, optimize them for specific tasks, and
understand the principles of their operation. Studying
different activation functions and their impact
on neural networks is an active area of research.
Activation functions introduce nonlinearity into the
network, allowing it to learn complex relationships in
the data. Just as humans need senses to understand the
world, neural networks need activation functions to
interpret information correctly. Activation functions
are like filters that decide which signals to let through
and which to ignore. They are crucial because they
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add an element of decision-making, allowing neural
networks to understand complex relationships in data.
This paper will present a study and comparison of
the characteristics of different activation functions.
How activation functions affect how neural networks
learn and perform. The world around us constantly
changes, depending on how we perceive it. It is
similar to trying on different pairs of glasses. Each
pair provides a unique view of the world. Some
glasses can improve your vision; others can change
how you see colors or add special effects, making
the world more attractive or unusual. Similarly,
each activation function changes the way the neural
network interprets data. Some make learning easier,
while others can slow it down or cause confusion.
This research paper aims to provide a clear and
comparative view of the different activation functions
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used in deep learning. It also aims to make complex
mathematical concepts accessible to a broader audience.

The study willreview different activation functions,
focusing on their advantages and disadvantages. To
better understand them, an experiment based on the
results of actual experiments using reference datasets
will be conducted. The experiment will provide an
opportunity to see how different activation functions
work in practice, gaining valuable insights into their
effectiveness.

Analysis of recent research and publications.
F. Kamalov, A. Nazir, M. Safaraliev, A. K. Cherukuri,
and R. Zgheib delve into a lesser-explored dimension
of neural network architecture: the correlation
between activation functions and geometric model
performance in feature space. While previous studies
have extensively examined the impact of activation
functions on model accuracy, little attention has been
paid to their impact on the underlying geometry of
neural network models. This study uses an empirical
analysis to examine how different activation functions
affect the geometric arrangement of trained neural
network models. In particular, the analysis aims to
elucidate the interaction between activations in the
hidden and output layers, the geometry of the trained
models, and their overall performance. To facilitate
understanding, the paper proposes a visualization
of trained neural network models, making it easier
for researchers to intuitively understand the impact
of activation functions on model geometry and
performance [1].

M. Kaloev and G. Krustev explore the dynamic
landscape of neural network research, which has
witnessed rapid progress that has led to the emergence
of various activation functions, each boasting unique
characteristics. Consequently, the compatibility and
interchangeability of these activation functions are
becoming increasingly relevant in the field. This
article addresses these issues by comprehensively
studying deep neural networks’ design, training, and
evaluation (DNNs), focusing on their use in pattern
recognition tasks. Through a thorough analysis, we
investigate the performance and behavior of three
standard activation functions — the sigmoid function
(Sigmoid), the hyperbolic tangent (tanh), and the
rectified linear unit (ReLU) — when used in the
hidden layers of a neural network. By elucidating
the nuances of these activation functions, the study
aims to provide valuable information crucial for the
optimal design and selection of activation functions
in ANNSs. Ultimately, this knowledge will contribute
to developing neural network architecture and
application areas [2].

Garrett Bingham, Risto Miikkulainen propose an
innovative method to automate the customization
of activation functions, which leads to a consistent
improvement in network performance. Using
evolutionary search, the proposed approach reveals
the fundamental structure of the activation function,
while gradient descent optimizes its parameters in
different network segments and during training.
Experimental validation on four different neural
network architectures using the CIFAR-10and CIFAR-
100 image classification datasets has confirmed
the effectiveness of this method. In particular, it
identifies general-purpose activation functions and
adapts specialized functions for different network
architectures, consistently outperforming ReLU and
other alternative activation functions by a significant
margin. Thus, this automated optimization method is
a promising way to improve the application of deep
learning in various tasks [3].

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut
Baran Chaudhuri offer a detailed analysis and overview
of activation functions (AFs) in neural networks for
deep learning. It delves into various classes of FAs,
including logistic sigmoid and tangent, ReLU-based,
ELU-based, and learning-based functions. In addition,
it discusses in detail various characteristics of ANNS,
including input range, monotonicity, and smoothness.
In addition, the paper evaluates performance by
comparing 18 state-of-the-art ANNs with different
network architectures and datasets. The findings
from this analysis are intended to provide researchers
with valuable guidance for further research and help
practitioners select the most appropriate ANNs for
their specific applications [4].

Andrea Apicella, Francesco Donnarumma,
Francesco Isgro, and Roberto Prevete review the
different models of learnable activation functions,
starting with a discussion of the terminology
used in the literature on ‘“activation function”.
After that, he introduces a taxonomy of learnable
activation functions, outlines the common and
unique characteristics of current and past models,
and thoroughly analyzes this methodology’s main
advantages and disadvantages. Notably, the article
emphasizes that numerous proposed methodologies
resemble integrating additional layers of neurons
using fixed (non-trained) activation functions
combined with simple local rules governing the
respective weight layers [5].

Activation functions in artificial neural
networks play a crucial role, allowing the network
to comprehend and model complex nonlinear
relationships between inputs and corresponding
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outputs. In [6], SiddharthSharma, SimoneSharma,
and AnidhyaAthaiya emphasize the need for an
activation function and nonlinearity in neural
networks. This study also provides a brief description
of various activation functions used in deep learning
and describes the importance of activation functions
for developing an effective model and improving the
performance of artificial neural networks.

Choosing the optimal activation function for a
neural network is one of the critical tasks in machine
learning. Throughout the field’s history, many
different activation functions have been proposed,
making choosing the optimal one challenging. Over
time, new and improved activation functions appear,
making the choice even more difficult [7-9].

The choice of activation functions in deep
networks has a significant impact on the dynamics
of learning and task performance. The most
successful and widely used activation function is
RectifiedLinearUnit (ReLU). Although various
alternatives to ReLU have been proposed, they have
yet to be able to replace it due to conflicting benefits.
In this paper, the authors propose to use automatic
search methods to discover new activation features.
The researchers verify the effectiveness of searches
by conducting an empirical evaluation with the best-
discovered activation function [7].

Activation functions are crucial in deep learning
networks because the nonlinear capability of activation
functions endows deep neural networks with accurate
artificial intelligence. Nonlinear nonmonotonic
activation functions such as straightened linear units,
hyperbolic tangent (tanh), sigmoid, Swish, Mish, and
Logish work well in deep learning models; however,
only a few of them are widely used in most applications
due to their inconsistency. In [8], a new nonlinear
activation function called Smish (SmoothMish) was
proposed. Unlike other activation functions, such as
ReLU, Smish has a smooth derivative, making it more
resistant to vanishing gradients during neural network
training. Smish is non-monotonic, which allows it
to model more complex nonlinear dependencies.
It has a range of output values from —1 to 1. The
potential impact of Smish on deep learning and
artificial intelligence is significant, inspiring further
exploration and research.

This paper proposes a universal activation function
(UAF) that achieves near-optimal performance in
quantification, classification, and reinforcement
learning tasks [9].

Formulation of the goals of the article. The
choice of activation function is an important step
in designing a neural network. Different activation

146 Tom 35 (74) N2 3 2024

functions have different properties and can lead to
different results. Therefore, the purpose of this study
is to provide a detailed overview of various commonly
used activation functions.

Outline of the main research material.
Understanding and comparing different activation
functions used in neural networks is an important
research topic. Each activation function has unique
properties that affect the dynamics and behavior of
the neural network. The activation functions to be
considered cover a diverse range, including Sigmoid,
Tanh (hyperbolic tangent), ReLU (rectified linear
unit), LeakyReLU, ELU (exponential linear unit),
SELU (scaled exponential linear unit), Swish, Mish,
Softmax.

Activation functions are mathematical algorithms
that transform neuronal inputs. In other words, they
determine whether a neuron will be active based on its
input. There are many different activation functions,
each with properties, as shown graphically in Figure 1.

The sigmoidal activation function, or the logistic
function, is a nonlinear function widely used in neural
networks. It converts input values into a range from 0
to 1 (see Figure 1) and is calculated using formula 1.

1
@) (+exp(=x)) M

The sigmoidal activation function is used in various
machine-learning tasks, including classification,
prediction, natural language processing, image
processing, and others. It has advantages over other
activation functions.

The activation function’s advantages include
simplicity, nonlinearity, and interpretability. The
sigmoid function is nonlinear, which allows neural
networks to model complex relationships between
input data and output values. The function s interpreted
because it converts input data into probabilities and is
easy to understand and implement.

However, it’s essential to be aware of the potential
challenges that the sigmoidal activation function can
pose. Saturation, for instance, can occur when the
input values become very large or very small, leading
to a halt in the learning process of neurons. Similarly,
the vanishing gradient problem, where the error
gradient becomes very small during training, can also
hinder the neural network’s performance.

The hyperbolic tangent (Tanh) is a mathematical
function often used in neural networks and other
machine learning fields. It calculates the hyperbolic
tangent of x, which can be any actual number.

Tanh (hyperbolic tangent) is similar to the sigmoid
function but ranges from —1 to 1 (see Figure 1).
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Fig. 1. Graphical representation of activation functions

It is calculated using the formula 2. Tanh is often used
as an activation function in hidden layers of neural
networks to help prevent the vanishing gradient
problem. Tanh can be used to scale or center data.
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The disadvantages of Tanh include incomplete
saturation. The function becomes saturated at the
edges of the range but never reaches —1 or 1, which
means that for large values of x, the function ceases
to affect the output significantly.

The hyperbolic tangent function is not symmetric
around the origin (f{x) # f(—x) for x # 0). It means
that the value of tanh(x) for positive values of x is not
equal to that of tanh(—x) for negative values of x.

Formula (2) contains exponential functions
that are not symmetric. The derivative of tanh
(Formula 3) shows that the derivative of tanh is always
greater than 0 when x > 0 and less than 0 when x < 0.
It means that the graph of tanh increases in the posi-
tive direction and decreases in the negative direction.

tanh'(x) =1—tanh’(x). 3)
ReLU (RectifiedLinearUnit) is a widely used

nonlinear activation function in artificial neural
networks, especially deep learning architectures. It

works by linearly activating input values greater than
zero and zeroing out negative values (see Figure 1).
The activation function is simple and computationally
efficient (Formula 4).

f(x)=max(0,x). 4

ReLU is simple and easy to understand and
implement. Its computation requires few resources.
It is usually used in the hidden layers of deep neural
networks.

ReLU also has disadvantages. If the neuron
receives only negative input values, it will always
output 0. It can lead to the neuron becoming “dead”
and not participating in training. The problem of the
vanishing gradient appears again. When the gradient
of the ReL.U function is 0 for negative values of x, it
can make it challenging to train the neural network.
Despite these drawbacks, ReLU is one of the most
popular activation functions. It is often used in neural
networks for classification, prediction, computer
vision, natural language processing, etc. ReLU is also
used in generative models such as GAN (Generative
Adversarial Networks) to generate images, text, and
other data.

LeakyReLU (RectifiedLinearUnit) is a modi-
fication of the ReL U activation function used in neural
networks. LeakyReLU extends the concept of ReLU
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by introducing a slight non-zero slope for negative
input values, thus alleviating the problem of neuronal
“death” that standard ReLU faces (see Figure 1). It
also helps prevent the vanishing gradients that can
occur when using ReL.U.

The formula calculates the activation function of
LeakyReLU:

f(x) =max(owx,x), %)

where x is the input value; a is slope coefficient,
which can be 0.1/0.01/0.001

A small slope for negative values helps gradients
propagate through the network during training.
LeakyReLLU can lead to better neural network
performance, especially for tasks with a lot of
negative data.

The disadvantages include the need to adjust the
slope coefficient. Also, LeakyReLU may be a less
effective activation function for tasks where the input
data is mostly positive.

The LeakyReLU activation function is simple
and effective and can help prevent overfitting. It can
be used for object recognition in images, natural
language processing, and text generation.

The ELU (Exponential Linear Unit) activation
function was introduced in 2015 in the article
“Fastand Accurate Deep Network Learning by
Exponential Linear Units (ELUs)» by Djork-Arne
Clevert, Thomas Unterthiner, and Sepp Hochreiter
[10].

While ELUs share similarities with ReLUs, they
exhibit distinct behavior (see Figure 1). The ELU
behaves like a regular ReLU for positive values,
preserving the input value. However, for negative
values, the ELU’s use of an exponential function
results in a value closer to zero than that returned by
the ReLU. This characteristic can be advantageous in
specific deep-learning scenarios.

The ELU activation function (Formula 6)
introduces an additional hyperparameter a for tuning,
which can be set manually.

x, x>0
f(X)={

ale™ —-1),x<0’

(6)

ELU can help neural networks learn faster
than other activation functions, such as ReLU or
sigmoid function. It has stable gradients, which can
help prevent the gradient from disappearing during
neural network training. Smoothed nonlinearity with
improved robustness to noisy input data compared to
ReLU.

The disadvantages include relative complexity.
ELU is amore complex activation function than ReLU
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or sigmoid, which can make it more computationally
expensive. In addition, ELU has a hyperparameter
that needs to be customized, making it difficult to use.

In [11], the authors proposed learning the ELU
parameterization to determine the correct activation
form at each level in CNN. The results obtained on
the MNIST, CIFAR-10/100, and ImageNet datasets
using NiN, Overfeat, All-CNN, and ResNet networks
show that the proposed parametric ELU (PELU)
performs better than the non-parametric ELU.

The Scaled Exponential Linear Unit (SELU)
extends the ELU concept by including a normalization
term to ensure that activations are self-normalized
across the network (see Fig. 1).

SELU has fixed values for the parameters o and A,
guaranteeing self-normalization of the activation
function. It means that the output values of SELU are
always automatically scaled to the mean and standard
deviation (Formula 7).

Ax, x>0
(et —1),x<0’

where a is the scaling constant; A is the shift constant.

The Swish activation function, proposed as an
alternative to ReLU, introduces smooth nonlinearity
while maintaining computational efficiency (see
Figure 1). It presents a similar performance to
ReLU with potentially smoother activation behavior.
Moreover, it introduces nonlinearity without losing
computational efficiency.

The Swish activation function is calculated by
formula (8).

fx)= { (7

f(x)=xxsigmoid(x) . ®)

The Swish activation function improves neural
network performance in tasks such as image
recognition, natural language processing, and machine
translation. Its smooth gradients can help in the
training process. Also, the activation function can be
used instead of ReLU or sigmoid without significantly
changing the neural network architecture.

The Mish activation function (Mishra’s Softmax-
based activation function), characterized by a flat
curve, offers a smooth alternative to ReLU and its
variants (see Fig. 1). D. Mishra proposed the activation
function in his study [12], which is calculated by the
formula (9).

F(x)=xxtanh(In(1+€")) . 9)

Mish provides smooth, differentiable nonlinearity,
making it convenient for use in neural networks.
Its continuous derivative over the entire definition
domain makes it robust to gradient vanishing. Mish
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has no upper or lower bound, allowing it to model
a wide range of values. It demonstrates competitive
performance compared to other activation functions.
The Softmax activation function is used in neural
networks tonormalize neuronal outputs to a probability
distribution. The derivative of the Softmax function is
more complex and depends on the cross-entropy loss
function used in neural network training. It is used
as an output layer activation function in multiclass
classification tasks. It converts raw scores into a
probability distribution, facilitating the interpretation
of model results (see Fig. 1). Mathematically, the
activation function is described by formula (10).

e
2
J

Softmax can be used to classify images from a
set of possible classes, to classify text documents,
to translate text from one language into another by
generating probabilities for each possible word in the
translation, etc.

We will choose the CIFAR-10 dataset (Canadian
Institute for Advanced Research, ten classes) to
test the performance and obtain metrics of different
activation functions.

The CIFAR-10 dataset is a widely used reference
dataset in computer vision. General information about
the CIFAR-10 dataset:

— Itisareference dataset widely used in computer
vision and machine learning research.

— The dataset consists of 60,000 32x32 color
images in 10 classes (airplanes, cars, birds, cats,
deer, dogs, frogs, horses, ships, and trucks), with
6,000 images in each class (5000 training and 1000
test images per class).

— Each image in the CIFAR-10 dataset is labeled
with a single class label indicating the object category
to which it belongs. The class labels are represented
by integers from 0 to 9, corresponding to the ten
classes in the dataset.

— The images are of relatively low resolution,
which makes them suitable for training and evaluating
image classification models.

— Researchers and practitioners use CIFAR-10
to compare the performance of different machine
learning methods and algorithms.

Overall, the CIFAR-10 dataset is a valuable
resource for training and evaluating image
classification models and serves as a standard
benchmark for the computer vision community.

To conduct the study, we built a hidden layer neural
network model of 128 neurons and systematically
evaluated its performance using each previously

Jf(x)= (10)

described activation function. Each activation
function was applied to the hidden layer separately,
which allowed us to comprehensively compare
their effectiveness in influencing the behavior and
performance of the network.

During the experiments with the neural network,
various metrics were collected from each experiment
to evaluate its performance under different activation
functions. These metrics included but were not
limited to, accuracy. Careful analysis of these metrics
provided valuable insights into each activation
function’s relative strengths and weaknesses in the
context of the CIFAR-10 dataset.

In addition, it is worth noting that the number
of training epochs was intentionally limited to 10
for each experiment. This intentional limitation was
introduced to model scenarios where computational
resources or time constraints require shorter training
periods. By imposing this restriction, the goal was to
assess the readiness of different activation functions
to adapt and perform optimally under limited training
conditions.

Conducting experiments under such controlled
conditions effectively assesses the reliability and
generalizability of each activation function within a
limited training time. This approach allows one to
assess the absolute performance of each activation
function and its ability to converge quickly and
efficiently in a limited training environment.

The activation functions investigated included
sigmoid, hyperbolic tangent, ReLU, leaky ReLU,
ELU, SELU, Swish, Mish, and Softmax. Each
activation function was tested in a controlled
experimental setup with a limited number of epochs
set to 10. The results of the experiment are shown in
Figure 2.

The experiments revealed significant variations
in the performance of neural network models
depending on the choice of activation function. In
particular, such activation functions as ELU, SELU,
and ReL.U proved to be the most effective in terms of
classification accuracy and convergence speed within
the limited ten epochs.

The experimental results emphasize the critical
role of activation functions in shaping the behavior
and performance of neural networks, especially
in image classification tasks. Activation functions
such as ELU, SELU, and ReLU demonstrated
excellent performance, indicating their effectiveness
in mitigating the vanishing gradient problem and
promoting faster convergence.

Despite the limited number of epochs, the
experiments provide valuable information about
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Fig. 2. Results of the experiment

the effectiveness of different activation functions in
improving the performance of neural network models
on the CIFAR-10 dataset. The results emphasize
the importance of selecting appropriate activation
functions to optimize the performance and efficiency
of neural network models under limited training.

Conclusions. This study investigated the
performance of different activation functions in the
hidden layers of a neural network using the CIFAR-
10 dataset. The activation functions studied were
sigmoidal, tangent hyperbolic, ReLU, LeakyReLU,
ELU, SELU, Swish, Mish, and Softmax.

Through extensive experiments and analysis,
it was found that the choice of activation function
significantly affects the neural network’s performance.
Among the tested activation functions, ELU, SELU,
and ReLU proved the most effective in improving
network performance on the CIFAR-10 dataset.

Inparticular, ELU, SELU, and ReLU demonstrated
better classification accuracy and convergence speeds
than other activation functions. These results align
with previous studies that indicate the effectiveness of

ELU and SELU in mitigating the vanishing gradient
problem and promoting faster convergence in deep
neural networks.

The results emphasize the importance of careful
activation function selection when designing and
training neural networks for image classification tasks.
By selecting appropriate activation functions such as
ELU, SELU, or ReLU, researchers and practitioners
can improve their neural network models’ overall
performance and efficiency.

Further research can explore the application
of these activation functions in other domains
and datasets to test their effectiveness in different
contexts. In addition, research into new activation
functions and optimization methods could lead
to further advances in deep learning and neural
network design.

Overall, the study makes a valuable contribution to
the selection and optimization of activation functions
to improve the performance of neural networks,
especially in the context of image classification tasks
using the CIFAR-10 dataset.
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CKNLAOHUX 3 decsimKamu abo Hagimes comuamu wapie. Kooicen wap modce micmumu mucsayi abo MinblioHU
HeUpoOHi8, a 38 S3KU MIdC HEeUPOHAMU MOJICYMb Oymu 3 Pi3HUMU 8azamu. Aneopummu HAGYAHHS HEUPOHHUX
MepexHc MONCYMb Oymu CKAAOHUMY OISl HANAUWIMYBAHHA MA ONMUMI3ayii, a npoyec HABUAHHA MOXCe 3AUMAMU
bazamo yacy, ocobauso 011 eerukux mepesc. Pyukyii akmusayii 8idieparoms K408y poib 8 HeUpPOHHUX
mepedicax, BUKOHYIOUU OeKiIbKa 8axdCIusux Qyukyiit, a came QyHxyii akmusayii 6600smv HeNiHIIHICMb 8
HEeUPOHHI Mepedct, ujo podums ix 30amHUMU GUUMUC HA CKIAOHUX OAHUX MA 8UKOHYBAMU CKIAOHI 3A0ayi.
Kpim moeo, @yuxyii akmusayii susnauaroms 8uxione sHa4eHHA HEUPOHA, AKe Modce OYmu iHmepnpemosano
AK UMOBIPHICIG, BeUUUHA ADO THWUL MUN 3HAYEHHS, 3ANeXCHO 810 3a0aui. Hetiponui mepedrci 3naunoro mipoio
3anedicams 8i0 QYHKYIL akmusayii, IKi GUKOPUCMOBYIOMbCS 8 IXHIX HEUPOHAX i 8i0icpaiomb 8UPIULATLHY POLb Y
opmysanni nogedinku ma nPoOyKMUGHOCMI HeUPOHHUX Mepedc. Y cmammi npedcmasieno cediunuil 02150
i nopisHANbHUL aHANi3 PI3HUX QYHKYINU akmueayii, K 3a36u4ail GUKOPUCMOBYIOMbCSL 8 2IUDOKOMY HABYAHHL.
Iuboke HaguanHa — ye 2iKa MAWUHHO20 HABYAHHA, WO BUKOPUCMOBYE HEUPOHHI Mepedxci 3 2nUubOKo
apximexmypoio. Y pobomi docaiodcyromuvcs pisni ¢ynxyii akmueayii (Sigmoid, Tanh, ReLU, LeakyReLU,
ELU, SELU, Swish, Mish, Softmax), sKi ukopucmosyomuscs 6 HelipoOHHUX Mepexcax. /lemanbHo onucyomocs
ix MamemamuyHi 61acmu8ocmi, nepesazu ma 0OMeHCeHHs KOJHCHOT YHKYIT akmusayii, a maxkoc emMnipuyHi
0ani ekcnepumMeHmie, nposedeHux Ha emaioHHux Habopax oanux. Ilpoeederi 00CiOdCeH A HAOAIOMb VSGeHH
npo eubip ma onmumizayiro QYHKYil akmusayii 051 apximexmypu HetpoHHOI MepedlCl.

Kniouosi cnosa: ynxyii axmueayii, neupouni mepeoici, enuboxe nasuanus, Sigmoid, Tanh, ReLU,
LeakyRelL U, ELU, SELU, Swish, Mish, Softmax.

151



